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Abstract

Preclinical studies suggest that a diversity of nicotinic acetylcholine receptors (nAChRs) with 

different sensitivities to nicotine may contribute to tobacco addiction. Using rodent intravenous 

nicotine self-administration as a preclinical model with good predictive validity for therapeutic 

efficacy for tobacco cessation, investigators have identified heteromeric α6β2* and homomeric α7 

nAChRs as promising novel therapeutic targets to promote smoking abstinence (*denotes the 

possible assembly with other subunits). The data suggest that diverse strategies that target these 

subclasses of nAChRs, namely inhibition of α6β2* nAChRs and stimulation of α7 nAChRs, will 

support tobacco cessation. α6β2* nAChRs, members of the high-affinity family of β2* nAChRs, 

function similarly to α4β2* nAChRs, the primary target of the FDA-approved drug varenicline, 

but have a much more selective neuroanatomical pattern of expression in catecholaminergic 

nuclei. Whereas activation of β2* nAChRs facilitates nicotine self-administration, stimulation of 

α7 nAChRs appears to negatively modulate both nicotine reinforcement and β2* nAChR function 

in the mesolimbic dopamine system. Although challenges and caveats must be considered in the 

development of therapeutics which target these nAChR sub-populations, an accumulation of data 

suggest that α7 nAChR agonists, partial agonists or positive allosteric modulators and α6β2* 

nAChR antagonists, partial agonists or negative allosteric modulators may prove effective 

therapeutics for tobacco cessation.
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Part 1: Introduction

Reductions in tobacco smoking have reached a plateau in developed countries where a 

majority of smokers report wanting to quit.1 Many of these individuals are non-responsive to 

currently available therapeutics for tobacco cessation. When nicotine replacement is 

delivered via routes of administration considered safer than smoking, it greatly increases 

abstinence in comparison to smokers who use no therapy, but still only assists a small 

minority of smokers in quitting.2 Nicotine in tobacco exerts its psychoactive effects at a 

diversity of nicotinic acetylcholine receptors (nAChRs) where it both stimulates these 

receptors and inactivates them via desensitization. Although most preclinical studies suggest 

that activation of β2 subunit containing nicotinic receptors (β2* nAChRs; *denotes possible 

assembly with other subunits), is required for nicotine reinforcement and reward,3-12 it is 

remains unclear from a therapeutic perspective whether activation or inhibition of diverse 

nicotinic receptor subtypes may best support tobacco cessation.13 Bupropion, an FDA-

approved smoking cessation drug which acts as a dopamine (DA) and norepinephrine (NE) 

transporter blocker, also has antagonist properties at nAChRs.14 Mixed agonist/antagonist 

strategies have been proposed to support tobacco cessation.15-17 Considerable increases in 

therapeutic efficacy are observed with varenicline and the natural derivative of the golden 

rain plant, cytisine18 which, as partial agonists of α4β2* nAChRs, have mixed agonist and 

antagonist properties. Given the diversity of nAChRs and their functions, it is possible that 

the effectiveness of varenicline may also be attributed in part to its selective nAChR 

targeting of the β2* nAChRs, including α4β2* nAChRs and α6β2* nAChRs. Although with 

lower affinity, varenicline is also a full agonist at α7 nAChRs and α3β4* nAChRs19, 20 

which preclinical data suggest may make important contributions to tobacco dependence 

phenotype.21-25

α4β2* nAChRs are well-studied for their role in nicotine addiction phenotype.4, 7-11, 26 

Based on rodent intravenous self-administration of nicotine, a preclinical model with good 

predictive validity for therapeutics for smoking cessation, this review will focus on two 

novel nAChR targets for tobacco cessation, the α7 homomeric nAChRs and the high 

sensitivity, heteromeric nAChRs containing α6 and β2 subunits (α6β2* nAChRs). 

See21, 27, 28 for a more comprehensive review of nAChR localization and contributions to 

tobacco addiction. When justified, this review will specify a more complete representation 

of subunits, but otherwise will more conservatively use the * nomenclature to indicate that 

precise subunit composition is yet to be determined. Part 2 of this review will provide the 

reader with an overview of nAChR composition and function, highlighting differences 

between the α7 and α6β2* nAChRs. These diverse receptor subtypes do not only respond 

differently to nicotinic agonists such as ACh and nicotine, but Part 3 of this review of the 

literature will show that the α7 and α6β2* nAChR subtypes also differentially regulate 

nicotine addiction behavior. Of import from a therapeutic perspective, activation of α6β2* 

nAChRs, like α4β2* nAChRs, supports the reinforcing efficacy of systemically 

administered nicotine;3, 5, 9, 10, 29, 30 in contrast, inhibition of α7 nAChRs facilitates rodent 

motivation to self-administer nicotine.22 Thus, with nicotine self-administration as a 

behavioral endpoint, it appears that α7 nAChRs work in opposition to β2* nAChRs. These 

preclinical data suggest that novel therapeutic strategies for smoking cessation include 
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inhibition of α6β2* nAChRs and activation of α7 nAChRs. Due to their unique 

neuroanatomical expression profiles, therapeutics targeting α7 nAChRs and α6β2* nAChRs 

may benefit different populations of smokers than have quit with existing therapies. The 

rather selective expression of α6β2* nAChRs in catecholaminergic nuclei including the 

mesolimbic DA pathway31, 32 suggests that targeted treatment of this nAChR subtype could 

benefit smokers while having reduced potential for side effects (but see Part 4 for 

considerations). The expression of α7 nAChRs has overlap with α6β2* and α4β2* nAChRs 

within the mesolimbic circuitry but is enriched in areas complementary to α4β2* nAChRs 

that support cognition and arousal.33 However, it should be noted that while overlapping on 

the tissue level, the expression of α7 and α6β2* nAChR are distinctly different on the 

cellular and subcellular levels in these tissues.e.g .34 Part 4 of this review will focus on drug 

development strategies and caveats for pharmacological stimulation of α7 nAChRs and 

inhibition of α6β2* nAChRs.

Part 2: Nicotinic receptor composition, function and expression

2.1 Nicotinic receptor diversity

The first studies of synaptic physiology, a necessary prelude to understanding brain 

function, were conducted at the neuromuscular junction, where the neuronal release of 

acetylcholine (ACh) leads to the activation of ion channels and, ultimately, muscle 

contraction. Although classified as nicotinic, the synaptic receptors of the mammalian 

neuromuscular junction are only weakly activated by nicotine and are physiologically 

distinct from the neuronal nAChRs in regard to their subunit composition. This facilitates 

selective targeting of nAChRs in brain where nicotine reinforcement takes place.35 The 

diverse composition and neuroanatomical location of neuronal nAChRs lends to their unique 

roles in addiction, attention, emotion and other behaviors, making selective targeting of 

subclasses of nAChRs possible for the treatment of tobacco addiction.

Like nAChRs at the neuromuscular junction, neuronal nAChRs are ligand-gated ion 

channels made up of 5 subunits. Consideration of the subunit composition of muscle-type 

receptors led to the assumption that there were two agonist-binding sites in each receptor 

pentamer, at the interfaces between the α (in current nomenclature, α1) subunits and non-

alpha subunits. The non-alpha subunits contributing to agonist binding sites were identified 

as the δ and either γ or ε subunits at muscle nAChRs. These sites for binding ACh and other 

agonists are referred to as the “orthosteric” binding sites to distinguish them from various 

allosteric sites where other ligands or proteins may bind to regulate the receptors properties 

in ways that can either increase or decrease the likelihood of channel activation. The muscle 

β subunit (in current nomenclature, β1) does not directly bind agonist. Subunits filling this 

fifth position in a pentamer have come to be known as structural or accessory subunits 

which do not necessarily participate in binding. Heteromeric neuronal nAChRs contain a 

combination of α and β subunits with binding believed to take place at the interface of α and 

its neighboring subunit. Models of receptor subunit composition based on the muscle 

receptor have been useful in understanding the functionality of the first nAChR subunit 

genes cloned from neuronal tissues. Some subunits were identified as alpha analogs based 

on the presence of vicinal cysteines in the ligand binding domain; however, it was unclear 
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how to classify the neuronal non-alpha subunits. The observation that they could only 

substitute for β1 subunits led to the classification of all neuronal non-alpha subunits as beta 

analogs.36 In total nine additional “alpha-type” subunits (α2–α10) and three additional 

“beta” subunits (β2–β4) have been cloned from neuronal tissue, although α8 has not yet 

been reported to be expressed in mammals. The model for a heteromeric receptor complex 

applied well to the first neuronal genes cloned. The α2, α3, and α4 genes formed functional 

receptors when expressed in Xenopus oocytes with either β2 or β4, each pair apparently able 

to form functional ligand binding domains with distinct properties.37 Pairwise expression of 

these subunits, however, results in mixed receptor populations, as either an α or a β can take 

the accessory subunit position, resulting in receptors with distinct functional38 and 

pharmacological properties.39 Two subunits, α5 and β3, do not appear to participate in 

functional agonist binding sites, but can co-assemble with other subunits, serving as 

accessory subunits.40, 41 Although such accessory subunits do not contribute to the primary 

agonist binding sites, they nonetheless have important impact on the function and 

pharmacology of the receptor subunit complexes.42, 43

The characterization of the heteromeric neuronal nAChR (summarized in Figure 1) also 

provided insight into early autoradiographic characterization of nicotine binding sites in 

brain.44 The ubiquitous pattern of high-affinity binding of nicotine corresponded to the 

overlapping expression pattern for α4 and β2 subunits,45 which are now known to constitute 

the main high-affinity nicotine receptors in rodent brain. α4β2* receptors (receptors 

containing two α4β2 agonist binding dimers and a fifth subunit, most often α4, β2, or α5) 

are the most abundant class of heteromeric nAChR in rodent brain.27 A phenylalanine 

residue in which is present in the β2 subunit is thought to contribute to the high affinity of 

β2* nAChRs.46 This high-affinity class of nAChRs also includes the α-conotoxin MII-

sensitive subclass of receptors, α6β2* and α3β2*, which may or may not co-express with the 

α4 subunit.47-49 With the exception of the medial habenula and the fasciculus retroflexis, 

where α-conotoxin MII binding is primarily attributed to α3β2* nAChRs32, 50-52, and the 

VTA and interpeduncular nucleus where α3β2* and α6β2* nAChRs are co-expressed, most 

α-conotoxin MII binding in brain is at the α6β2* nAChRs. In contrast to α4β2* nAChRs 

that do not express α3 or α6, the α-conotoxin MII-sensitive nAChRs have a more restricted 

expression profile in catecholaminergic nuclei in the brain.31, 32, 53 Of relevance for their 

role in tobacco addiction, as will be discussed later in this review, the α6β2* nAChRs are 

greatly enriched in ventral tegmental area (VTA) dopamine neurons.

For a number of years a mystery remained concerning a putative class of nAChR in brain 

which did not bind nicotine or ACh with high affinity, but did bind the snake toxin, α-

bungarotoxin, which had proven useful in isolating the muscle nAChR. Understanding these 

binding sites came only with the discovery of a second family of nAChR subunits, α7 – α10, 

which could function as homomeric, or sometimes heteromeric, complexes without 

requiring co-assembly with β subunits.54, 55 Unique properties of these homomeric receptors 

in contrast to the β2* nAChRs will be given special consideration in this review.
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2.2 Nicotinic receptor function

Nicotinic acetylcholine receptors are allosteric proteins that have multiple conformational 

states, with the equilibria among these states regulated by ligand binding. The simplest 

models allow for the existence of distinct states, including resting, activated and desensitized 

as illustrated in Figure 2.56, 57 Positioned on neuronal dendrites, soma and terminals, 

neuronal nAChRs are expressed widely throughout the nervous system on cells that release 

diverse neurotransmitters. Since agonist binding results in both activation and 

desensitization,, nAChRs promote nicotine- and ACh-associated modulation of neuronal 

function including stimulation or inhibition of neurotransmitter release.58, 59 In the brain 

ACh is released in a relatively diffuse manner, and functions primarily as a modulator of 

neuronal function and subsequently affects the release of various neurotransmitters, 

including glutamate, GABA, norepinephrine, serotonin, ACh itself, and DA. Binding of 

endogenous ACh or exogenous agonist compounds (e.g. nicotine) at the orthosteric binding 

sites results in an increase in the probability of opening of the nAChR ion channel, permits 

passage of cations across the membrane of the neurons and leads to depolarization of the cell 

which can facilitate neuronal firing.60-62 The ligand activity at allosteric binding sites which 

can positively or negatively modulate the function of agonist-bound nAChRs will be 

considered further in Part IV of this review. The activated state of the receptor is 

intrinsically unstable and further conformational changes are likely to occur, associated with 

nonconducting desensitized states. It is generally believed that the receptor activation 

achieved with cigarette delivery of nicotine, albeit transient, is important for the immediate 

reinforcing properties of the drug and that this reinforcement is associated with a parallel 

increase in mesolimbic DA release. After a period of excitation, which varies widely across 

the heteromeric and homomeric receptor subtypes, the heteromeric nAChRs 

thermodynamically favor a desensitized state in which the channels are closed with the 

agonist still bound to the receptor.63 In this highest affinity state, the desensitized 

heteromeric nAChRs are typically unavailable for ligand-gated activation; however, 

evidence suggests that an intermediate level of desensitization can occur where both the β2* 

nAChRs and the α7 nAChRs equilibrate between activated and desensitized states resulting 

in low levels of steady-state activation.64, 65 Following a period of desensitization, upon 

removal or metabolism of agonist, the receptors typically revert back to the inactive, 

unbound state. It is widely accepted that activation of the β2* nAChRs, including α4β2 and 

α6β2* nAChRs, is both necessary and sufficient for nicotine self-administration and 

reward.3, 5, 8-11 Recent evidence suggests that a variety of nicotine addiction behaviors, 

including nicotine reinforcement, are supported by inhibition of diverse nAChR 

subtypes.13, 66-68

2.3 Heteromeric α6β2* nAChRs

The α6β2* nAChRs (including α6β2, α3α6β2, α6β2β3, α3α6β2β3, α4α6β2, and α4α6β2β3) 

are members of an α-conotoxin MII-sensitive subclass of β2* nAChRs that have a high 

affinity for nicotine and ACh. Genetically modified mice engineered to be hypersensitive to 

agonist compounds11, 69 or in which each of these subunits, alone or in combination, have 

been deleted,7, 9, 32, 47, 50, 70 have further contributed to our knowledge of the expression 

and function of these nAChRs. The α6 subunit was initially identified via cloning and is 

most homologous to the α3 subunit,71 perhaps explaining their shared affinity for α-
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conotoxin MII when coupled with β2. The development of more refined conotoxins for 

study of α6* nAChR subtypes and studies in traditional heterologous systems indicate that 

α6 subunits may also co-assemble with α3 and β4 without a β2 subunit in the retina and the 

dorsal root ganglion.72-76

Genetic null mutations of α3 and α6 subunits in mice show that, with the exception of the 

interpeduncular nucleus and the VTA where α3β2* and α3α6β2* nAChRs are co-expressed 

with α6β2* nAChRs (minus α3), most α-conotoxin MII binding is to α6* nAChRs50, 52 so 

this ligand selectively binds and antagonizes α6β2* nAChRs in VTA DA terminal 

projection areas. α6 and β3 mRNA are co-expressed in catecholaminergic nuclei and pull-

down assays show that α6β2* nAChRs have a high incidence of co-expression with β3 as an 

accessory element.40, 48, 70 A number of studies suggest that α4 may also co-express with 

α6 and β2 and that VTA α4α6β2* nAChRs are uniquely more sensitive to nicotine than β2* 

nAChRs that do not assemble with both of these subunits. Functional ex vivo studies suggest 

that, minus an α3 subunit, the full complement of α6β2* nAChRs promotes DA release at 

the terminals.48-50

Understanding the function of α6β2* nAChRs presented a special challenge since α6 and β2 

subunits do not readily form receptors in cell lines or Xenopus oocyte. Molecular 

pharmacology studies using α3/α6 chimeras and molecular concatamers, which clone the 

precise subunit composition and organization of the nAChRs, confirm that α6β2β3 and 

α4α6β2β3 nAChRs are permeable to calcium and bound by compounds such as varenicline 

and di-hydrobeta-erythroidine (DHβE) that also bind to the α4β2* nAChRs.19, 64, 77 

Although it would appear that the α4 subunit contributes largely to this shared affinity,19, 77 

it has proven difficult with pharmacology alone to distinguish contributions of α4β2 

nAChRs and α6β2* nAChRs and α4α6β2* nAChRs. Ex vivo electrophysiology of VTA DA 

neurons of wild type, α6 and α4 subunit knockout mice shows that 300 nM concentrations 

of nicotine, which preferentially desensitize α4β2* nAChRs without an α6 subunit, results 

in stimulation of α4α6β2* nAChRs.48, 78-80 These data reveal that mesolimbic α4α6β2* 

nAChRs are uniquely sensitive to activation in response to physiologically relevant 

concentrations of nicotine that are achieved during smoking as demonstrated in Figure 3A. 

In addition, nicotine amplifies the action of endogenously released ACh in modulating 

dopamine release via these receptors81, 82 though perhaps through a different mechanism. 

Gain-of-function mice created by mutating a Ser to Leu residue in the M2 domain of the α6 

subunit have further enhanced electrophysiological and neurochemical studies of α6* 

nAChRs to show that stimulation of α6* nAChRs is sufficient to enhance dopamine neuron 

firing in response to nicotine or ACh.69

Whereas β2* nAChRs are ubiquitously expressed throughout the brain, α-conotoxin MII 

binding studies show that α6β2* nAChRs have a more selective expression profile. 

Numerous studies have demonstrated functionalα6 nAChRs in CNS catecholamine 

neurons.83 As an accumulation of data suggests that nicotine addiction behavior is regulated 

in large part by the mesocorticolimbic DA pathway which projects from the VTA to the 

nucleus accumbens (NAc), anterior cingulate cortex, hippocampus, and amygdala; hence it 

is of relevance to their putative role in tobacco addiction phenotype that α6β2* nAChRs are 

highly enriched in the dopamine neurons of the VTA. The α6β2* nAChRs are co-expressed 
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with α3β2* nAChRs in the VTA but are preferentially expressed on DA terminals in the 

nucleus accumbens. Although a combination of β2* nAChRs contribute to nicotine 

stimulated DA release in the NAc,48-50 cyclic voltammetry studies suggest that α6β2* 

nAChRs support 80% of DA release at terminals.81 α6β2* nAChRs are much less involved 

in dorsal striatum DA release81, 84 but are likely to contribute to motoric behavior at the 

level of the substantia nigra where decreases in α6β2* nAChRs expression are associated 

with DA Parkinson’s disease phenotype in humans and animal models.85, 86 The 

development of increasingly more selective α-conotoxin MII compounds has enabled the 

study of α6 in isolation of α3 where these receptors are co-expressed.e.g .52, 87 More 

recently, the presence of α6β2* nAChRs has also been reported in presynaptic GABAergic 

boutons,88 in noradrenergic terminals in the hippocampus89 and on retinal glutamatergic 

projection neurons and GABAergic soma in the superior colliculus of the visual system.90 

α6* nAChRs are located postsynaptically on the cell-body where they regulate cell firing 

and mediate direct postsynaptic effects. α6* nAChRs are also located presynaptically on 

nerve terminals where they serve to modulate the release of neurotransmitters including 

dopamine,49 norepinephrine91 and GABA92. In the periphery of mammals, the adrenal gland 

participates in release of catecholamines, primarily adrenalin, into the bloodstream. In 

humans, this release is modulated in part by α6* nAChRs,75 suggesting that α6* nAChRs 

contribute to systems that regulate arousal.

2.4 Homomeric α7 nAChRs

Alpha7 nAChR are distinguished from other nAChR by a number of unique physiological 

and pharmacological properties, including a high permeability to calcium (PCa:PNa of ≥10), 

and rapid and reversible desensitization55. Even under optimized conditions, the maximal 

probability for any single α7 receptor within a large population to participate in a 

synchronized transient current is two orders of magnitude lower than that of a typical 

heteromeric receptor. Under optimal steady-state conditions the probability of any single α7 

receptor being open is less than one in a million.93 This low probability of being open, in 

part, reflects the extreme instability of the open conformation under control conditions, 

when rarely occurring isolated channel openings are typically less than 100 μs in duration. 

α7 nAChRs are expressed in the inderpeduncular nucleus, the nucleus accumbens shell and 

the ventral tegmental area (VTA) of the mesolimbic DA pathway where they regulate 

nicotine stimulated DA neuron activity (discussed in greater detail below).34, 94 The α7 

subunit is also expressed at high levels in the hippocampus, the hypothalamus55, 95 and α-

bungarotoxin binding is enriched in deep layers of cortex,44. In addition to brain areas that 

regulate cognition, attention and arousal, α7 nAChRs have also been shown to have 

functionally important expression in non-neuronal tissues, such as cells of the immune 

system.96 Phylogenetic data indicate that the α7 gene represents a sort of ancestral nAChR, 

a protein that may have evolved in organisms that did not rely on fast chemical 

neurotransmission. This is consistent with the presence of α7 in numerous non-neuronal cell 

types97-99 and the fact that α7 receptors are not strictly receptors for acetylcholine but 

respond also to choline,100, 101 the ubiquitous precursor to ACh. This feature suggests that 

α7 nAChRs are adapted to respond following enzymatic breakdown of ACh and proposes a 

possible mechanism by which α7 nAChRs may oppose the activity of the β2* nAChRs. 

Recent evidence supports a modulatory role for α7 nAChRs in the VTA to decrease β2* 
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nAChR function via stimulation of intracellular signaling cascades that inhibit β2* 

nAChRs.94

The functional properties of α7 receptors have been studied in Xenopus oocytes,65, 102 

cultured hippocampal neurons,102-106 mammalian cell lines93 and native neuronal tissues.107 

One consistent finding is that the kinetic properties of α7 receptors cannot be adequately 

described by the models of heteromeric nAChR discussed above.

For a quiescent population of heteromeric nAChR in the absence of agonist, the rapid 

application of a concentration of ACh sufficiently high to saturate the agonist binding sites 

produces maximal synchronous transient activation. When a similar application of agonist is 

made to a population of α7 receptors, the maximal synchronous transient activation occurs 

when only a fraction of the agonist binding sites are occupied.93, 102, 108-110 This 

observation suggests that, as with the case of heteromeric receptors, the allosteric effects of 

binding to just one or two of the five possible binding sites may promote channel opening 

but that at higher levels of binding, the receptor is most likely to adopt nonconducting 

conformations as illustrated in Figure 3C. Recently, data suggest that in addition to 

functioning, rather inefficiently as a ligand-gated ion channel, α7 nAChRs may also mediate 

channel-independent signal transduction.111, 112 However, it is perhaps more likely that the 

alpha7 ion channel activity is essential for modulating reward in the dopamine pathways of 

the brain, as indicated for the cognitive effects of α7 agonists.113 As will be discussed in 

more detail in Part 4 below, pharmacological compounds which have their action at an 

allosteric binding site of the α7 nAChRs can both promote activation and destabilize 

desensitization of the α7 nAChRs.

Part 3: Preclinical evidence to support inhibition of α6β2* and stimulation 

of α7 nAChRs as therapeutic strategies for tobacco cessation

3.1 Selective inhibition of α6* nAChRs impairs nicotine use

Since the first null mutation of the β2 nAChR subunit demonstrated that β2 knockout mice 

would not self-administer nicotine,9 it has become widely accepted that activation of the β2* 

nAChRs supports nicotine reinforcement and reward. It had been presumed that this was due 

to β2 nAChR subunit assembly with α4, more recent studies have expanded upon this data 

to suggest that mesolimbic β2* nAChRs that assemble with an α6 and/or α4 subunit play a 

critical role in both the initiation10 and maintenance of nicotine self-administration.3, 5 Mice 

with a null mutation of the α4, α6, or β2 nAChR subunit gene do not acquire nicotine self-

administration. Initiation of nicotine self-administration is rescued in these mice, however, 

with selective neuroanatomical re-expression of each of these subunits in the VTA region,10 

suggesting that α4α6β2* nAChRs in DA neurons are critical for initiation of nicotine 

reinforcement as depicted in Figure 3. A combination of pharmacological and genetic 

studies have identified a class of DA neurons in the VTA that is highly sensitive and 

persistently activated by nicotine requires both the α4 and α6 subunits.78 More chronic 

nicotine self-administration studies reveal that activation of mesolimbic α6β2* nAChRs in 

the VTA5 as well as on DA terminals in the NAc shell3, 48 are critical for maintenance of 

nicotine self-administration and nicotine-stimulated DA release. Intra-VTA infusion of 
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DHβE, an antagonist of α4β2* and α6β2* nAChRs or a selective α6β2* nAChR antagonist, 

α-conotoxin PIA blocks systemic nicotine self-administration in well-trained rats,4, 5 but see 

studies on intra-VTA nicotine self-adminsitration which suggest a dichotomous role for 

these receptors in the VTA.82 Selective antagonism of α6β2* nAChRs in the NAc shell also 

significantly attenuated the degree to which animals were willing to work for an intravenous 

nicotine infusion,3 suggesting that α6β2* nAChRs are exerting their effects on the terminals 

of VTA DA receptors as well as on the soma. In this latter study rats were reinforced on a 

progressive ratio schedule of reinforcement, which is thought to measure motivation for 

drug reinforcers.114

Local delivery of drugs into the brain provides internal experimental control that is not 

afforded by systemic administration and lends neuroanatomical interpretation of the data, 

but from a therapeutic perspective, it is important to test whether global inhibition of α6β2* 

nAChRs will decrease the reinforcing efficacy of nicotine without having unintended effects 

on other behaviors. This research has been limited by the fact that the selective α6β2* 

nAChR peptide antagonists described above do not cross the blood brain barrier. Recent 

development of a putative selective antagonist of α6β2* nAChRs, has revealed that this 

novel compound, BPiDI, shows similar effects to α-conotoxin MII antagonists to reduce 

nicotine-induced DA overflow in striatal slices.115 Similar to local infusions of selective 

α6β2* nAChR antagonists into the accumbens shell or VTA, subcutaneous injection of 

BPiDI is effective at reducing nicotine self-administration, suggesting that this compound 

crosses the blood brain barrier.115 Further studies are needed to determine the selectivity of 

this drug to curb nicotine use as systemic administration of BPiDI also had some effect to 

inhibit food self-administration.115 Preclinical studies using ethanol as a primary reinforcer 

suggest that α6β2* nAChRs in the VTA may broadly regulate drug reward and the 

conditioned reinforcing properties of cues associated with drug reinforcers.116, 117 Given the 

expression of α6β2* nAChRs in the visual system and substantia nigra,50, 53, 90 systemic 

effects of compounds that reduce α6β2* nAChR activity should also be assessed for 

potential visual and motor side-effects prior to advancement to clinical trials. Off target 

effects of drugs may be subverted using negative allosteric modulators or partial agonist 

drugs. Varenicline, which is a partial agonist at α6β2* nAChRs as well as α4β2* nAChRs, is 

purported to have its beneficial effect on smoking cessation via its partial agonist properties 

at β2* nAChRs.118, 119 Varenicline’s full agonist properties at α7 nAChRs20 may also prove 

relevant for its efficacy in smoking cessation as is discussed below. Incomplete inhibition of 

β2* nAChRs with the partial agonist rather than a full antagonist is intended to circumvent 

precipitation of withdrawal while blunting nicotine reinforcement. Studies in mice, however, 

show that global CNS delivery of a selective α6β2* nAChR antagonist peptide reduces 

“affective” withdrawal and has no effect on somatic withdrawal behavior in mice.6 Together 

these behavioral and pharmacological and genetic data suggest that inhibition of α6β2* 

nAChRs may be an effective strategy to promote tobacco cessation in human subjects, but 

there is a need for further development and study of selective α6β2* nAChR antagonists, 

partial agonists and negative allosteric modulators that cross the blood brain barrier.

Brunzell et al. Page 9

Ann N Y Acad Sci. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



3.2 Selective activation of α7* nAChRs decreases motivation for nicotine use

Compared to β2* nAChRs, it has proved more difficult to identify contributions of α7 

nAChRs to nicotine reinforcement. Early studies in α7 null mutant mice suggested that α7 

nAChRs were not critical for nicotine discrimination120 and that a lack of α7 nAChRs had 

little impact on nicotine place conditioning or initiation of oral nicotine self-

administration 10, 12, 30. Studies testing nicotine self-administration in rats have returned 

mixed results using methyllycaconitine (MLA),121, 122 an α7 nAChR antagonist with poor 

penetration of the blood brain barrier. Moreover, since MLA significantly blocks α-

conotoxin MII-sensitive release of dopamine and binding, it is not clear if reductions of 

intravenous nicotine self-administration observed following MLA exposure are due to α7 

nAChR antagonism122 or due to blockade of α6β2* nAChRs.123 Using a highly selective α7 

nAChR antagonist, ArIB, local inhibition of α7 nAChRs in anterior cingulate cortex or the 

NAc shell results in a 3 fold increase in rat responding for nicotine under progressive ratio 

schedules.22 Given that the low doses of nicotine achieved under this stringent schedule of 

reinforcement is not likely to result in a net stimulation of α7 nAChRs, this increased 

motivation for nicotine is likely due to blockade of endogenous ACh or choline signal at 

these receptors rather than a blockade of nicotine signal. Knockout mice lacking their α7 

nAChRs have reported reductions in oral preference for nicotine compared to their wild type 

counterparts,30 but it is not clear from the two bottle choice paradigm if α7 null mutant mice 

“like” nicotine less of if they are titrating their doses because they are more sensitive to 

nicotine. The latter hypothesis is supported by recent data showing that nicotine conditioned 

place preference is shifted to the left in α7 nAChR knockout mice at exceptionally low 

nicotine doses.24 This preclinical evidence in rodents may provide some insight into the 

heavy smoking behavior of individuals with schizophrenia124-131, who post mortem studies 

show have a 50% decrease in expression of α7 nAChRs132-139. Evidence from a preclinical 

animal model of smoking cessation efficacy shows that stimulation of α7 nAChRs decreases 

nicotine self-administration. In contrast to antagonist studies, local infusion of a highly 

selective α7 nAChR agonist into the NAc shell, like antagonism of α6β2* nAChRs, results 

in significant decreases in motivation to self-administer nicotine as measured by reduced 

responding under progressive ratio schedules.22 In support of rat self-administration which 

suggests that stimulation of α7 nAChRs reduces nicotine reinforcement, administration of a 

selective α7 nAChR agonist blocked nicotine reward behavior in the place conditioning 

paradigm and α7 gain of function mice failed to demonstrate nicotine reward in this 

paradigm at a wide range of doses.24

It would appear from these studies that rather than its activation being required for nicotine 

reinforcement, stimulation of α7 nAChRs modulates self-administration behavior. Selective 

removal of the α7 nAChR function removes this modulation, leaving the α6β2* and other 

heteromeric β2* nAChRs unopposed as depicted in the model shown in Figure 

3.22, 94, 140; but see 141 Unlike β2 subunit null mutant mice which fail to show nicotine-

stimulated DA release,9 nicotine stimulated DA release is significantly elevated in the NAc 

of α7 nAChR knockout mice.141 Whether α7 nAChRs directly or indirectly decrease α6β2* 

nAChR function in the NAc shell or if the two subtypes of nAChRs have their primary 

effects via a common downstream effector is unclear. Within the VTA, however, recent 

studies indicate that inhibition of α7 nAChRs on DA neurons leads to elevated β2* nAChR 
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activity on these neurons and that activation of α7 nAChRs, via changes in peroxisome 

proliferator-activated receptors type-α signaling, leads to subsequent decreases in β2* 

nAChR function.94 Independent of mechanism, together these findings support stimulation 

of α7 nAChRs as a novel means by which to curb tobacco use. Further studies assessing 

systemic administration of compounds that stimulate α7 nAChRs on nicotine addiction 

phenotype are needed. Due to potential benefits for cognition and memory, drug 

development on this front has received more focus than compounds targeting α6β2* 

nAChRs. A number of selective agonists and positive allosteric modulators of α7 nAChRs 

are being developed for other uses and are already in clinical trials.142 Preclinical and 

clinical studies of these ligands may reveal a novel therapeutic for smoking cessation.

Part 4: Pharmacological tools for inhibition of α6β2* and activation of α7 

nAChRs: implications for drug development

4.1 Targeting α6β2* nAChRs and α7 nAChRs for tobacco cessation

With the relatively rapid delivery of nicotine achieved with cigarettes, a phase of high 

affinity receptor activation is typically followed by the onset of equilibrium desensitization 

of nAChRs. As detailed above, activation of mesolimbic α6β2* nAChRs occurs at lower 

concentrations than for α4β2* nAChRs that do not express α678 and several studies suggest 

that populations of α6β2* nAChRs also show a slower decay rate, suggesting that α6β2* 

nAChRs may have longer periods of net activation than other subclasses of 

nAChRs.77, 78, 143, 144 An accumulation of preclinical data showing that inhibition of α6β2* 

nAChRs reduces nicotine-stimulated DA release, nicotine reward and intravenous nicotine 

self-administration,3, 5, 9, 10, 47, 48, 115 supports inhibition of α6β2* nAChRs as a strategy for 

tobacco cessation. In contrast, the α7 nAChRs are less likely than heteromeric nAChRs to 

either be activated or stabilized in desensitized states by levels of nicotine achieved in the 

brains of smokers, but these receptors are responsive to both ACh and its metabolic 

precursor and breakdown product, choline.100, 101 Rather than their activation being required 

to support nicotine self-administration, α7 nAChRs appear to act as modulators of nicotine 

reinforcement that work in opposition to the α6β2* and α4β2*nAChRs. In contrast to 

findings with α6β2* nAChRs, selective genetic and pharmacological inhibition of the α7 

nAChRs increases motivation to intravenously self-administer nicotine and results in 

elevated nicotine-stimulated DA release.22, 141 Rather, as selective agonism of accumbens 

α7 nAChRs decreases motivation for nicotine self-administration, the data support 

stimulation of α7 nAChRs as a strategy to promote tobacco cessation as depicted in Figure 

4.22

4.2 Route of administration

Consideration should be given to route of administration when developing therapeutics for 

tobacco cessation. Therapeutics in their most common forms are slow delivery products. 

When a potentially activating molecule like nicotine is delivered slowly, as with systemic 

administration via a patch or pill, there is likely to be relatively little synchronized receptor 

activation, and, instead, receptors equilibrate amongst multiple conformational states.145, 146 

This equilibrium predominantly favors desensitization and thusα also blunts receptor-

mediated responses to endogenous cholinergic stimuli. This may explain why most forms of 
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nicotine replacement are effective in a small minority of smokers who are motivated to quit. 

Once deemed safe, faster delivery platforms, such as e-cigarettes, could provide an effective 

delivery system for compounds intended to stimulate nAChRs. Route of administration 

should not be a concern with delivery of antagonist and partial agonist drugs intended to 

inhibit receptor activity as would be the strategy with α6β2* nAChRs, but the typical oral 

and cutaneous routes of drug administration could preclude sufficient delivery of an agonist 

that could selectively stimulate α7 nAChRs. As described briefly above and in detail 

elsewhere,110 however, the concentration-dependent form of α7 nAChR desensitization 

renders the α7 nAChRs uniquely sensitive to a class of highly selective positive allosteric 

modulators (PAMs) which can destabilize one or more desensitized states and thereby 

greatly increase the probability of channel opening. Also, as noted above, the desensitized 

states of α7 receptors can be further distinguished from those of heteromeric nAChR 

because they do not show significantly increased affinity for agonists compared to the 

resting state of the receptor. As a consequence, while the prolonged presence of a low 

concentration of ACh, or a drug like nicotine, will induce high levels of heteromeric 

receptor desensitization, α7 receptors will be largely unaffected and remain responsive to 

fluctuating stimuli generated from endogenous ACh signals. α7 nAChR PAMs may increase 

the sensitivity, efficacy and duration of these ACh signals.

4.3 Ligands that inhibit α6β2* nAChRs

There are two major challenges in designing therapeutics that selectively antagonize α6β2* 

nAChRs. The first has been to develop drugs that bind the α6 subunit without having 

appreciable affinity for α3* and α4* nAChRs in the absence of the α6 subunit. The second 

has been to develop compounds with high selectivity for α6β2* nAChRs that cross the blood 

brain barrier. The first of these challenges can be achieved by screening molecules against 

libraries of α6/α4 or α6/α3 chimeras in functional assays. This strategy has led to the 

development of peptide compounds with significant sensitivity for the α6 subunit over α3* 

nAChRs, which are prevalent in the autonomic ganglia and over α4* nAChRs, which are 

ubiquitously expressed throughout the brain. 87, 147-150 Recent studies utilized α-conotoxin 

BuIA, a compound with known binding selectivity for β2 over β4 and a 50,000 fold higher 

potency for α6β2* compared to α4β2* nAChRs to determine the sites of the α subunit 

interface that confer binding affinity and potency. These studies revealed that replacing 

residues 59-207 of the α4 subunit with the α6 results in >7000 fold increase in IC50 efficacy 

compared to its action at α4 with critical sights present on the C-Loop between residues 184 

and 207 of α6.148 Cone snail toxins, which bind to vertebrate and mammalian α6* nAChRs, 

have provided a valuable, naturally-occurring template from which to develop compounds 

that selectively target α6β2* nAChRs; these large molecule peptides, however, do not 

readily penetrate the blood brain barrier. Adapting the size and lipophilicity of these 

peptides to encourage passive diffusion is challenging and the compounds may still have 

difficulty accessing the target receptors. Recent developments suggest that the saturable 

transport systems may prove to be a more efficient means of providing drug delivery to the 

CNS.151 The addition of structures intended to shepherd the α6β2* nAChR antagonists 

across transporters in the endothelial layer or choroid plexis could increase the 

bioavailability of α6β2* nAChR ligands, but should be carefully screened to assure that they 

do not alter compound affinity, selectivity or efficacy. To date there are no selective α6β2* 
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nAChR compounds in clinical trials, but the field is rife with scientific tools to support their 

development.

Partial agonists and negative allosteric modulators (NAMs) provide additional strategies to 

promote inhibition of α6β2* nAChRs. Although much more selective in their 

neuroanatomical expression than α4β2* nAChRs, a prevalence of α6β2* nAChRs in the 

nigra-striatal pathway and the visual system may call for therapeutic approaches that inhibit, 

rather than block neurotransmission at these receptors. Negative allosteric modulation of the 

α6β2* nAChRs could prove sufficient to reduce activity of mesolimbic α6β2* nAChRs 

without adversely impacting the function of these receptors in the visual and motor systems. 

The pharmacology of the partial agonist varenicline has a significant effect at α6β2* 

nAChRs.77, 152 Recent development of novel bispidine β2* nAChRs partial agonist 

compounds with a lower affinity than varenicline for ganglionic α3β4 nAChRs may also 

promote smoking cessation while reducing side effects, but these drugs need to be tested for 

their affinity to α6β2* nAChRs and for their capability to reduce nicotine self-

administration.153 As we have come to understand that α6β2* nAChRs are a critical 

subclass of β2* nAChRs that support nicotine reinforcement,3, 5, 10 a more selective α6β2* 

nAChR partial agonist may prove to have greater efficacy or reduced side effects in 

smokers. Since varenicline is a full agonist at α7 nAChRs, albeit with lower affinity than for 

its action at β2* nAChRs,20 it would be of further interest to discover if there is synergy in a 

combined therapeutic approach that supports inhibition of α6β2* nAChRs and stimulation 

of α7 nAChRs.

4.4 Ligands that stimulate α7 nAChRs

Selective stimulation of α7 nAChRs is an innovative strategy for smoking cessation 

treatment. A number of highly selective α7 nAChR agonists and PAMs of diverse structure 

have been developed in recent years.142 Full and partial α7 nAChR agonist drugs mimic the 

effects of cholinergic and nicotine stimulation, but unlike global nAChR stimulation, 

preclinical studies show that selective agonism of α7 nAChRs reduces motivation for 

nicotine use.22 Agonist drugs lead to rapid desensitization of nAChRs, but as mentioned 

above, the desensitized state of α7 nAChRs is not as stable as that of the high affinity 

heteromeric nAChRs.

Another means of achieving stimulation of α7 nAChRs is via positive allosteric modulation 

of these receptors. As opposed to a full agonist, which mimics the effects of ACh, choline 

and nicotine to activate the α7 nAChRs, a nAChR PAM exerts no nAChR activity on its 

own, but enhances the efficacy of full agonist via binding at an alternate, allosteric, 

site110, 154 Type I PAMs may lower the activation threshold of nAChRs to agonist ligands. 

Type II PAMs additionally increase nAChR responsiveness to agonist ligands, enhance 

channel current amplitudes and slow the decay of channel current activity, suggesting that 

Type II PAMs destabilize nAChR desensitization to increase equilibrium current (e.g. 

Figure 4C).155 Although PAMs which have intrinsic allosteric agonist activity have been 

described,155-157 a true α7 nAChR PAM does not activate α7 nAChRs on its own, but in 

binding to an allosteric site (different from the orthosteric nicotine/ACh binding site) 

selectively enhances nicotine and ACh activity at the α7 nAChRs. Hence, administration of 
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PAMs might be expected to decrease motivation for tobacco when individuals are smoking 

cigarettes or could increase the efficacy of nicotine replacement therapies. Because they 

have no effect on their own, nAChR PAMs may be less likely than agonist compounds to 

result in undesirable side effects, but careful screening of these compounds is warranted to 

ensure that exaggerated receptor stimulation does not cause toxicity,110, 158 particularly if 

used in combination with nicotinic agonists. In individuals who have reduced expression of 

α7 nAChRs, such as those with schizophrenia diagnosis, in vitro α7 nAChR expression 

studies using the truncated, dominant negative α7 duplicate gene suggest that treatment with 

a Type II α7 PAM may promote stimulation of these receptors.159 Both α7 nAChR full 

agonist and α7 PAM dosing may need to be adjusted for these individuals, although 

preclinical studies suggest that PAMs may be less likely than a full agonist to lead to 

changes inα7 nAChRs that could affect dosing after repeated exposure.160 A number of 

selective α7 nAChR agonists and PAMs have been developed for treatment of cognitive and 

attention deficits that are evident with CNS disorders, many of which have advanced to 

clinical trials.e.g .142, 161 With development of clinical trials on tobacco cessation, there is 

promise that some of these compounds may be repurposed or prescribed off label to help 

individuals quit smoking.

Part 5: Summary

Smoking continues to be a major public health concern. Although existing therapeutics for 

smoking cessation have appreciated some success in assisting smokers to quit, a number of 

individuals have been unresponsive or intolerant to existing treatments. As individuals have 

a diversity of reasons for smoking, they may also benefit from different cessation strategies 

for quitting.162 An accumulation of recent studies identify the heteromeric α6β2* and 

homomeric α7 nAChRs as promising novel therapeutic targets to promote tobacco 

abstinence. A combination of electrophysiological, pharmacological and genetic studies 

have begun to suggest that the efficacy of drugs which inhibit the α4β2* nAChRs may 

indeed be targeting α4α6β2* nAChRs. Given their more selective neuroanatomical 

distribution, drugs which more selectively inhibit α6β2* nAChR function could appreciate 

therapeutic success with fewer side effects. The broad assumption that activation of nAChRs 

promotes nicotine reward and reinforcement had resulted in the conclusion from early 

studies in α7 nAChR knockout mice that these low affinity receptors were not critical for 

nicotine addiction. An accumulation of recent data has begun to identify that unlike β2* 

nAChRs, an inverse relationship exists between α7 nAChR function and nicotine 

reinforcement and reward. Reductions in α7 nAChR function achieved by genetic or 

pharmacological manipulation promotes nicotine addiction phenotype whereas selective 

stimulation of α7 nAChRs reduces nicotine reward and motivation to self-administer 

nicotine. Together these studies identify novel classes of nAChRs and unique strategies for 

treatment of tobacco dependence.
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Figure 1. 
Classes of nicotinic acetylcholine receptors (nAChRs) and contributing subunits. 

Competitive agonists bind to a site formed by the interface of α and non-α subunits. In 

neuronal nAChRs, ligand binding occurs at the α-β subunit interface. In muscle nAChRs, 

binding occurs at α-δ, α-γ and α-ε subunit interfaces. Because the muscle nAChR β1 subunit 

does not bind agonist, therapeutic compounds for smoking cessation can selectively target 

neuronal nAChRs without producing adverse off-target effects at the muscle receptors. The 
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accessory subunits, noted here for their structural contributions, can also contribute to ligand 

binding affinity and the channel properties of the receptor when bound by agonist.
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Figure 2. 
Models for the activation and desensitization of heteromeric nAChRs. Cartoons depict a 

cross section of heteromeric nAChRs, viewed as if the structural subunit were removed. The 

characteristic conformational states of the nAChRs highlight the transmembrane topology 

and key elements associated with ligand binding and conformational change. In the unbound 

receptor (resting state) the C-loop of each subunit, which is located over the presumptive 

agonist binding site, extends away from the surface in the “Apo-conformation”, and the Cys-

loop is in proximity to the short extracellular loop (ECL) between transmembrane domains 

TM2 and TM3. When an agonist diffuses into the binding pocket, a series of conformational 

changes are energetically favored that lead to a reconfiguration of the C-loop closing in on 

the ligand, and the dissolution of point-to-point amino acid interactions that are stable in the 

resting state. This begins a wave of conformational change that is transmitted through the 

protein and promotes an effect at the Cys-loop-ECL interface which causes the 

conformational change to encompass the formation of the ion channel, resulting in the 

activated state. It is important to note that stimulation of nAChRs does not typically occur in 

isolation but en mass. In moving from the unbound resting state to the fully bound resting 

state, pools of nAChRs will initially show synchronized behavior with many channels open 

all at once for a brief period of time. Subsequent to an initial period, when many channels 

will be open with high probability, channels will begin to accumulate in the desensitized 

state and remain there with greatest probability until levels of agonist occupancy are reduced 

following the diffusion or metabolism of transmitter.
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Figure 3. 
A model of nicotinic receptor subtype contributions to nicotine reinforcement and DA 

release as might be expected with increasing concentrations of nicotine (depicted in gray). 

Nicotine and endogenous ACh are depicted as blue triangles. A) Unbound α7 nicotinic 

acetylcholine receptors (nAChRs) are inactive and at rest at low concentrations of nicotine. 

300 nM nicotine that is sub-threshold to stimulate α7 nAChRs preferentially desensitizes 

α4β2* nAChRs. In the VTA, α4α6β2* nAChRs on DA neurons are persistently activated by 

this physiologically relevant concentration of nicotine believed to be achieved in the brains 

of smokers. B) Higher concentrations of 1-3 μM nicotine activate α4β2* as well as α6β2* 

nAChRs. After activation, these receptors stabilize in a desensitized state, but fast 

application of nicotine activates sufficient subpopulations of these receptors to support 

nicotine reinforcement. Genetic and pharmacological manipulations that block activation of 

α6β2* or α4β2* nAChRs, lead to reductions in nicotine self-administration and nicotine 

stimulated DA release, hence, activation of β2* nAChRs appears necessary for nicotine 

reinforcement. C) With higher concentrations of nicotine (10 μM), nicotine reinforcement 

would be satiated or reduced in smokers. The high affinity α4β2* and α6β2* nAChRs would 

be shifted to the desensitized state and hence, block reinforcing efficacy of subsequent 

applications of the drug. Higher concentrations of nicotine sufficient to stimulate 

populations of α7 nAChRs would reduce motivation to self-administer nicotine. Stimulation 

of α7 nAChRs by endogenous ACh would have a similar behavioral effect and stimulation 

of α7 nAChRs would have an indirect effect to inhibit nicotine reinforcement via 

stimulation of signaling pathways that inhibit β2* nAChR function on VTA DA neurons. 

Individuals who have blunted α7 nAChRs, such as those with schizophrenia, may smoke 

more heavily than individuals with a full complement of α7 nAChRs. α7 nAChR agonist 

ligand bound to more than two binding sites favors the desensitized state of these receptors. 

*Denotes possible assembly with other subunits. β3 is the typical accessory subunit that 
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assembles with α6β2* nAChRs. The high sensitivity α4β2* nAChRs, those with β2 rather 

than α4 or α5 at the accessory site, are depicted above.
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Figure 4. 
A functional model for α7 and α6β2* nAChRs as therapeutic targets for smoking cessation. 

Nicotine and endogenous ACh are depicted as blue triangles; increasing concentrations of 

nicotine are shown in gray. A) Low concentrations of nicotine favor activation of α6β2* 

nAChRs that support nicotine reinforcement. Based upon preclinical research, which reveals 

that selective stimulation of α7 nAChRs reduces motivation to self-administer nicotine and 

blunts β2* nAChR function, stimulation of α7 nAChRs with a full agonist (red triangle) or a 

positive allosteric modulator (red plus) ought to reduce nicotine reinforcement and 

motivation to smoke cigarettes. α7 Type I PAMs increase sensitivity of the α7 nAChRs so 

that lower than normal concentrations of nicotine and ACh result in a net activation of α7 

nAChRs. B) As has been shown with nicotine self-administration in rodents, an animal 

model with good predictive validity for smoking cessation efficacy, direct inhibition of 

α6β2* nAChRs with an α6β2* nAChR full or partial antagonist (black X) ought to be 

sufficient to reduce smoking urges. C) Type II PAMs prevent desensitization as well as 

promote stimulation of nAChRs.An α7 nAChR PAM ought to decrease nicotine’s 

reinforcing efficacy, perhaps via indirect inhibition of high sensitivity α4β2* and α6β2* 

nAChRs.
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