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Abstract
Limitations in efficacy and high relapse rates of currently available smoking cessation agents reveal
the need for more efficacious pharmacotherapies. One strategy is to develop subtype-selective
nicotinic receptor (nAChR) antagonists that inhibit nicotine-evoked dopamine (DA) release, the
primary neurotransmitter involved in nicotine reward. Simple alkylation of the pyridino N-atom
converts nicotine from a potent agonist into a potent antagonist. The classical antagonists,
hexamethonium and decamethonium, differentiate between peripheral nAChR subtypes. Using a
similar approach, we interconnected varying quaternary ammonium moieties with a lipophilic linker
to provide N,N′- bis-nicotinium analogs, affording a lead compound, N,N′-dodecyl-1,12-diyl-bis-3-
picolinium dibromide (bPiDDB), which inhibited nicotine-evoked DA release and decreased nicotine
self-administration. The current work describes a novel compound, 1-(3-picolinium)-12-
triethylammonium-dodecane dibromide (TMPD), a hybrid of bPiDDB and decamethonium. TMPD
completely inhibited (IC50 = 500 nM) nicotine-evoked DA release from superfused rat striatal slices,
suggesting that TMPD acts as a nAChR antagonist at more than one subtype. TMPD (1 μM) inhibited
the response to acetylcholine at α3β4, α4β4, α4β2, and α1β1εδ receptors expressed in Xenopus
oocytes. TMPD had a 2-fold higher affinity for the blood-brain barrier choline transporter, suggesting
that is brain bioavailable. TMPD did not inhibit the hyperactivity in nicotine sensitized rats, but
significantly and specifically decreased nicotine self-administration. Together, the results suggest
that TMPD may have the ability to reduce the rewarding effect of nicotine with minimal side effects,
a pharmacological profile indicative of potential clinical utility for the treatment of tobacco
dependence.
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Introduction
Neuronal nicotinic acetylcholine receptors (nAChRs) are CNS targets for the development of
drugs to treat a variety of diseases including tobacco dependence, drug addiction, Parkinson's
disease and depression, among others. Tobacco addiction is a major health problem in the US,
accounting for more preventable illnesses and deaths than any other single factor [1]. Currently
available tobacco use cessation agents (i.e., nicotine, bupropion and varenicline) have limited
efficacy and relapse rates are reported to be high, revealing a continuing need for the
development of alternative, more efficacious smoking cessation pharmacotherapies [1-3].
Dopamine (DA) release evoked by nicotine via activation of presynaptic nAChRs is thought
to mediate nicotine-induced reward, leading to tobacco dependence [4-8]. Nicotine-evoked
DA release is completely inhibited by the nonselective, noncompetitive nAChR antagonist,
mecamylamine [9-11]. Mecamylamine has some efficacy as a tobacco cessation agent, but its
therapeutic use is limited by peripherally-mediated side-effects [12]. One therapeutic strategy
is to develop novel subtype-selective nAChR antagonists that inhibit nicotine-evoked DA
release, which may prove efficacious as smoking cessation agents with fewer side-effects due
to their nAChR subtype-selective action.

Nicotine, the major alkaloid in tobacco, activates with varying potency all known nAChRs
[13], and these nAChRs modulate release of various neurotransmitters [14-16]. nAChRs are
pentameric and have discrete expression patterns [17-19]. Genes for α2-α7 and β2- β4 subunits
have been identified in mammalian brain [20,21]. Heteromeric nAChRs exist as combinations
of α and β subunits, and variations in subunit compositions contribute to differences in nAChR
function and pharmacology [22-24]. nAChRs are located on DA cell bodies and terminals,
including substantia nigra and striatal terminal fields. Substantia nigra DA neurons express
α3, α4, α5, α6, α7, β2, β3 and β4 mRNA [25-27]. Variations in subunit combinations may be
involved in the formation of nAChR subtypes which modulate DA release at striatal
presynaptic DA terminals. Native subtypes by convention have an asterisk designation to
indicate putative composition [28]. Results show that α-conotoxin MII (α-CtxMII), the Conus
snail peptide neurotoxin, as well as small quaternary ammonium molecules, N-n-
pentadecylpyridinium bromide, N-eicosylpyridinium bromide and N,N′-dodecyl-1,12-diyl-
bis-3-picolinium dibromide (bPiDDB), only partially inhibit nicotine-evoked striatal DA
release, indicating involvement of more than one population of nAChR subtype [29-34].
Studies using β2 knockout mice have shown the involvement of β2-containing nAChRs in
nicotine-evoked DA release [31,35-37]. α4β2*, α6β2*, and α4α6β2* subtypes are suggested
to mediate the DA response to nicotine [38]. Results from a comprehensive molecular genetics
study in which an individual subunit gene (i.e., α4, α5, α7, β2, β3, and β4) was deleted suggested
that at least 6 different subtypes mediate nicotine-evoked DA release from mouse striatal
synaptosomes, including 2 classes of nAChRs: α-CtxMII-sensitive nAChRs (i.e., α6β2β3*,
α4α6β2β3* and possibly a small amount of α6β2* or α4α6β2* subtypes) and α-CtxMII–
resistant nAChRs (i.e., α4β2* and α4α5β2* subtypes), whereas deletion of β4 and α7 subunits
had no effect [39]. Also, α6- and β3-containing nAChRs have been implicated in nicotine-
evoked DA release [24,40,41]. Additionally, substantia nigra neurons express high levels of
both α6 and β3 mRNA [26,40-43] consistent with their involvement in mediating nicotine-
evoked DA release.
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To further complicate the association of a particular response with a specific nAChR subtype,
studies using recombinant receptors report that when the ratio of subunit pairs is varied,
different subtype classes are formed and the function of these different subtype classes is
dependent on subunit ratio [44]. Exposure to drug also influences nAChR subtype
stoichiometry and function in recombinant receptor systems [44-46]. Different DA neurons
can be categorized based upon the expression of the specific subtype composition [27]. CNS
nAChRs and their modulation of neurotransmitter release have been reviewed recently [47,
48]. Thus, the presence of specific mRNAs encoding a particular subunit, the relative ratio of
transcribed subunits, specific expression of nAChR subtypes by different DA neurons, and
pharmacological history are all important to neuronal function and potentially play a role in
the response to nicotine and to drugs which block the effect of nicotine.

The observation that nAChR subtypes which mediate nicotine-evoked DA release are
pharmacologically different suggests that subtype-selective antagonists can be developed. As
part of our drug development efforts, the nicotine molecule has been modified to obtain
subtype-selective nAChR antagonists. Simple alkylation of the pyridino N-atom converts
nicotine from a nonselective agonist into a potent, subtype-selective, competitive antagonist
[49-51], leading to the discovery of a new class of nAChR antagonists resulting from N-
alkylation of the pyridine moiety of nicotine [49-57]. These novel analogs exhibit potent
inhibition of nAChR subtypes mediating nicotine-evoked DA release from striatal nerve
terminals. Quaternization of the pyridine N-atom of nicotine with a lipophillic N-alkyl
substituent to afford N-alkylnicotinium analogs and/or interconnecting varying quaternary
ammonium moieties with a lipophilic linker to afford N,N′-bis-quaternary ammonium analogs
generates subtype-selective nAChR antagonists, which could have potential as novel smoking
cessation agents.

bis-Trialkylammonium salts such as hexamethonium chloride and decamethonium bromide
are regarded as simplified analogs of d-tubocurarine and have been utilized to differentiate
between subtypes of peripheral nicotinic receptors. We adopted a similar approach and
generated a sub-library of compounds based on bis-nicotinium analogs by incorporating a
variety of head groups and linkers varying in length and unsaturation, which resulted in the
identification of a lead compound, bPiDDB, that potently inhibited nicotine-evoked DA release
in vitro and decreased nicotine self-administration in rats in vivo [58-60].

Our current research focuses on the development of novel, potent and selective antagonists at
nAChRs mediating nicotine-evoked DA release through structural modification of bPiDDB.
We describe the effects of a novel compound, 1-(3-picolinium)-12-triethylammonium-
dodecane dibromide (TMPD), which is a structural hybrid of bPiDDB and the C10
neuromuscular blocking agent, decamethonium. One quaternary ammonium head group of
TMPD is a 3-picolinium moiety and the other head group is triethylammonium moiety; both
head groups are separated by a C12 linker identical to that found in the bPiDDB molecule.

Decamethonium and hexamethonium do not cross the blood-brain barrier. The blood-brain
barrier is a major limiting factor for brain distribution, with ∼98% of small molecules being
excluded from brain because they do not diffuse across the blood-brain barrier or they are
subject to efflux. In addition, considering hydrophilic or charged compounds do not readily
permeate cell membranes, the blood-to-brain drug permeation of these molecules is typically
less than 1% [61-63]. However, bPiDDB was able to access the brain by being transported via
the blood-brain barrier choline transporter. The structural change from bPiDDB to TMPD is
not expected to alter the transport properties of TMPD at the blood-brain barrier choline
transporter. Thus, the current report describes the synthesis and the neurochemical, behavioral
properties of our lead compound, TMPD, and the ability of this compound to interact with the
blood-brain barrier choline transporter.
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Methods
Synthesis of TMPD

1-(3-Picolinium)-12-triethylammonium-dodecane dibromide (TMPD) was prepared by
dissolving 3-picoline (1.63 g, 17.50 mmol) and 1,12-dibromododecane in 150 ml acetonitrile
and heated at 50 °C for 24 h (Fig. 1). After the mixture was cooled to room temperature, solvent
was removed in vacuo using a rotary evaporator. The residue was suspended in diethyl ether
(100 ml), and the precipitate was removed by filtration, washed with diethyl ether, and
dissolved in water (80 ml). The resulting aqueous solution was extracted with diethyl ether (40
ml × 3) and then chloroform (50 ml × 3). The combined chloroform extracts were dried over
anhydrous sodium sulfate, filtered, and concentrated in vacuo. The resulting solid residue was
triturated with diethyl ether, filtered and dried in vacuo, to afford 4.86 g of 1-(3-picolinium)-12-
bromododecane bromide as a pale yellow powder; 1H NMR (300 MHz, CDCl3) δ 9.35 (s, 1H),
9.20 (d, J = 6.0 Hz, 1H), 8.23 (d, J = 7.8 Hz, 1H), 8.00 (dd, J = 7.8, 6.0 Hz, 1H), 4.84 (t, J =
7.5 Hz, 2H), 3.33 (dt, J = 6.9, 3.3 Hz, 2H), 2.59 (s, 3H), 2.56 (t, J = 7.5 Hz, 2H), 1.95 (m, 2H),
1.77 (m, 2H), 1.05−1.22 (m, 14H) ppm; 13C NMR (75 MHz, CDCl3 δ 145.6, 144.4, 142.2,
139.6, 127.9, 61.9, 34.4, 32.9, 32.1, 29.52, 29.46, 29.43, 29.2, 28.8, 28.2, 26.2, 18.9 ppm. The
above product (2.0 g) was mixed with triethylamine (10 ml) and stirred at 60 °C for 24 h. The
residual triethylamine was removed in vacuo using a rotary evaporator, and the residue was
dissolved in water (20 ml). The resulting aqueous solution was extracted with chloroform (20
ml × 3), the water layer was evaporated to dryness under vacuum and the resulting residue was
dried in vacuo for 24 h to afford 2.27 g of TMPD as a viscous amber oil; ; 1H NMR (300 MHz,
D2O) δ 8.70 (s, 1H), 8.64 (d, J = 5.7 Hz, 1H), 8.35 (d, J = 7.8 Hz, 1H), 7.92 (dd, J = 7.8, 5.7
Hz, 1H), 4.55 (t, J = 7.5 Hz, 2H), 3.10−3.33 (m, 8H) 2.54 (s, 3H), 2.00 (m, 2H), 1.66 (m, 2H),
1.10−1.43 (m, 25H) ppm; 13C NMR (75 MHz, D2O) δ 146.0, 143.8, 141.4, 140.0, 127.5, 61.9,
56.95, 56.92, 52.71, 52.68, 52.64, 47.0, 30.7, 28.9, 28.8, 28.7, 28.5, 28.3, 25.9, 25.5, 21.1, 18.0,
8.6, 7.0 ppm.

Animals
For DA release and behavioral assays, male Sprague-Dawley rats (200 to 225 g) from Harlan
Industries (Indianapolis, IN) were used. For blood-brain barrier choline transporter assays,
Fischer 344 rats (220−250 g) from Charles River Laboratories, (Kingston, N.Y., U.S.A.) were
used. Rats had unlimited access to food and water in the home cage, except as noted. Rats were
maintained on a 14:10 h light/dark cycle in which the lights came on at 0600 h and went off at
2000 h. All experiments were conducted during the light phase of the cycle. In the behavioral
studies, rats were acclimated to the animal colony for at least 5 days and were handled briefly
on 3−5 consecutive days prior to the start of the experiment. The Institutional Animal Care
and Use Committee of the University of Kentucky and Texas Tech University Health Sciences
Center approved the conduct of the experiments described herein. The experiments conformed
to the guidelines established by the NIH Guide for the Care and Use of Laboratory Animals
(1996 Edition).

[3H]DA release assay
Nicotine-evoked overflow of [3H]DA (28 Ci/mmol, Perkin Elmer, Boston, MA) from striatal
slices preloaded with [3H]DA was determined using a previously published method with minor
modifications [57,64,65]. Briefly, striatal slices were prepared using a McIlwain tissue chopper
(Mickle Laboratory Engineering Co Ltd, Surrey, England). Slices were incubated at 34°C in
Krebs' buffer containing 118 mM NaCl, 4.7 mM KCl, 1.2 mM MgCl2, 1.0 mM NaH2PO4, 1.3
mM CaCl2, 11.1 mM α-D-glucose, 25 mM NaHCO3, 0.11 mM L-ascorbic acid, and 0.004 mM
ethylenediaminetetraacetic acid (EDTA), pH 7.4, saturated with 95%O2/5%CO2) in a
metabolic shaker for 30 min. Slices were transferred to fresh buffer, 0.1 μM [3H]DA added
and incubation continued for 30 min. Subsequently, slices were rinsed with Krebs' buffer and
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transferred to superfusion chambers maintained at 34°C (Brandel suprafusion system 2500,
Gaithersburg, MD) and were superfused (flow rate = 0.6 ml/min) for 60 min with oxygenated
Krebs' buffer containing both nomifensine (10 μM), a DA uptake inhibitor, and pargyline (10
μM), a monoamine oxidase inhibitor. Two samples (2.4 ml/sample, sample collection at 4 min
intervals) were collected for determination of basal [3H]outflow. Slices were superfused for
36 min in the absence (0 nM; control, which was superfused with Krebs' buffer only) or
presence of mecamylamine or TMPD (1 nM -10 μM; vehicle for both antagonists was Krebs'
buffer) to determine the effect of the compound alone. Nicotine (10 μM) was added to the
buffer; superfusion continued and samples were collected for 36 min to determine the ability
of mecamylamine or TMPD to inhibit nicotine-evoked [3H]DA overflow. At the end of the
experiment, slices were removed from the chambers and were solubilized with 1 ml of TS-2
tissue solubilizer (Research Products International Corp, Prospect, IL). Scintillation cocktail
(4 mL) was added to superfusate and solubilized tissue samples. Radioactivity was determined
by liquid scintillation spectroscopy using a 1600 TR Tri Carb Liquid Scintillation Analyzer
(Packard, Downer's Grove, IL). Fractional release was determined by dividing the [3H] in each
superfusate sample by the tissue-[3H] at the time of collection and expressed as percent of total
tissue tritium. Basal [3H]outflow was determined as the mean of fractional release in the two
basal samples collected prior to the introduction of mecamylamine or TMPD in the superfusion
buffer. Total [3H]overflow was the sum of fractional release above basal following addition
of nicotine to the buffer. IC50 represents the antagonist concentration which decreased nicotine-
evoked [3H]DA overflow by 50% of the maximal effect and was calculated using an iterative
nonlinear least squares curve-fitting program, PRISM version 4.0 (Graph PAD Software, Inc,
San Diego, CA). A one-way ANOVA with Dunnett's post-hoc analysis was used to determine
if mecamylamine or TMPD inhibited nicotine-evoked total [3H]DA overflow.

Preparation of RNA and expression in Xenopus oocytes
Rat neuronal nAChR clones and mouse muscle α1, ß1 and δ were obtained from Dr. Jim Boulter
(UCLA). The mouse muscle ε clone was provided by Dr. Paul Gardner (Univ. Massachusetts
Med. School). A form of the α6/α3 chimera [66] was obtained from Michael McIntosh
(University of Utah) and corrected for a point mutation as previously reported [67]. Mature
(>9 cm) female Xenopus laevis African toads (Nasco, Ft. Atkinson, WI) were used as a source
of oocytes. The Institutional Animal Care and Use Committee of the University of Florida
approved the conduct of the experiments described. Experiments were conducted as previously
described, [68] using OpusXpress 6000A (Molecular Devices, Union City CA). Each oocyte
received initial control applications of acetylcholine (ACh), then co-applications of ACh and
1 μM TMPD, and then a follow-up control application of ACh. The control ACh concentrations
utilized in α1ß1εδ, α7, α4ß4, α4ß2 receptor experiments were 3 μM, 60 μM, 10 μM, and 10
μM, respectively, and 100 μM in α3ß4, α4/6ß4 and α6/3ß2ß3 receptor experiments. These ACh
control values were chosen because they evoke robust and reproducible responses for each of
the respective subtypes, minimizing the chance that rundown or desensitization would be
misinterpreted as inhibition. Both the peak amplitude and net charge [69] of the responses were
measured for each drug application and calculated relative to the preceding ACh control
responses to normalize the data, compensating for the varying levels of channel expression
among the oocytes. Net charge values were used to report inhibitory effects. Means and
standard errors (SEM) were calculated from the normalized responses of at least four oocytes
for each experiment.

Blood-brain barrier [3H]choline uptake assay
Uptake of [3H]choline (79.2 Ci/mmol, Perkin Elmer, Boston, MA) into brain was assessed
using the in situ rat brain perfusion technique. Briefly, Fischer 344 rats were anesthetized with
sodium pentobarbital (50 mg/kg, i.p.). A PE-60 catheter filled with heparinized saline (100 U/
ml) was placed into the left common carotid artery after ligation of the left external carotid,
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occipital and common carotid arteries. The pterygopalatine artery was left open during the
experiments. Rectal temperature was maintained at 37 °C by a feedback device (YSI Indicating
Controller, Yellow Springs, Ohio). The catheter was connected to a syringe containing a
warmed (37 °C), gassed (95% O2 and 5% CO2), buffered physiologic perfusion fluid containing
128 mM NaCl, 2.4 mM NaPO3, 29.0 mM NaHCO3, 4.2 mM KCl, 1.5 mM CaCl2, 0.9 mM
MgCl2 and 9 mM D-glucose (pH = 7.35 and 290 mOsm) with 1 μCi/ml [3H]choline and 0.3
μCi/ml [14C]sucrose (4.75 mCi/mmol, Perkin Elmer, Boston, MA). The perfusion fluid was
infused for 60 s at 10 ml/min (Harvard Apparatus, South Natick, MA. U.S.A.), maintaining a
carotid artery pressure of ∼120 mm Hg. After 60 s perfusion, the perfusion fluid was changed
immediately to a tracer-free perfusion fluid for 15 s to wash out residual nonspecific [3H]
choline in the vasculature. Cerebral samples were obtained and digested at 50 °C in 1 ml of 1
M piperidine solution. Ten ml of scintillation cocktail (Beckman, Fullerton, CA., U.S.A.) was
added and tracer contents assessed by dual-label liquid scintillation spectroscopy. Brain uptake
of [3H]choline was determined by calculation of a single time point blood-to-brain transfer
coefficient (Kin), as previously described [70] from the relationship Kin = [Ctot-VvCpf]/(Cpf/
T), where Ctot = Cbr + Cvas, the sum of the amount of choline remaining in the perfusate in the
blood-brain vessels and the amount of choline penetrating into brain. Cerebral vascular volume
and cerebral perfusion flow rate were determined in separate experiments as previously
described [71,72], where Cpf is the perfusion fluid concentration of tracer choline and T is the
net perfusion time with the assumption that uptake is linear. An apparent cerebrovascular
permeability surface-area product (PS) was then determined using the relationship, PS = Fln
(1-kin/F), where F is the cerebral blood flow determined for each region of the brain from the
uptake of [14C]diazepam (76.0 Ci/mmol, Perkin Elmer, Boston, MA). Inhibition of [3H]choline
brain uptake was determined by the inclusion of unlabeled choline or TMPD (250 μM) in the
perfusion fluid. An apparent inhibition constant (Ki) for choline and TMPD was determined
from the equation [(PAo-KD)/(PAi-KD)] = 1+Ci/Ki assuming competitive kinetics where
PAo is the [3H]choline PA in the absence of TMPD, PAi is the [3H]choline PA in the presence
of TMPD, and Ci is the perfusate concentration of TMPD. Apparent Ki is defined as the TMPD
concentration that reduces saturable brain [3H]choline influx by 50% at tracer choline
concentration (Cpf <<Km) and in the absence of other competing compounds. Data are from
the frontal cerebral cortex, and are expressed as mean ± SEM for n = 3−4 independent
determinations for each compound evaluated. Data were analyzed by ANOVA with Bonferroni
correction for multiple comparisons (GraphPad Prism 4, Graphpad Software, San Diego, CA).

Locomotor Activity Assays
Locomotor activity was recorded automatically using an animal activity monitoring system
with Versamax System software (AccuScan Instruments Inc., Columbus, OH). Rats were
placed into a monitoring chamber (42 × 42-cm square and 30 cm high) made opaque by
attaching sheets of white plastic to each outer surface. The chamber incorporated a horizontal
16 × 16 grid of photo beam sensors, with each beam 2.5 cm apart and 7.0 cm above the chamber
floor. Locomotor activity was recorded for either 30 or 60 min, depending on the experiment.
Activity was measured by photo beam interruptions and expressed as total distance traveled
(cm).

The first experiment assessed the locomotor effect of TMPD alone. Rats were assigned
randomly to one of two different treatment groups that received either TMPD (0.58, 1.94 and
10.9 μmoles/kg, s.c., 1ml/kg body weight) or 0.9% NaCl (saline). TMPD was prepared in
saline. Rats given TMPD were first injected with the middle dose (1.94 μmoles/kg) on each of
5 consecutive days (Mon-Fri), followed by a two-day (Sat-Sun) rest period. Fifteen min after
injection, rats were monitored for locomotor activity for 30 min. This procedure was repeated
over the next 2 weeks, with the dose changed to 0.58 and 10.9 μmoles/kg for weeks 2 and 3,
respectively. The saline control group was treated similarly, except all injections were saline.
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To be consistent with the procedure used in the operant conditioning experiments (see below),
rats were restricted throughout the experiment to 20 g food given at the end of each locomotor
session (Mon-Fri) or during the afternoon (Sat-Sun). Food consumption and any signs of
toxicity (lethargy, ataxia, failure to groom) were monitored daily. Since the highest dose of
TMPD (10.9 μmoles/kg) produced pronounced hypoactivity and lethargy in the first
experiment, only the two lower doses (0.58 and 1.94 μmoles/kg) were tested for their ability
to block nicotine-induced hyperactivity in the second experiment.

In the second experiment, rats were first sensitized to the locomotor stimulant effects of nicotine
(0.4 mg/kg, s.c., given once daily on Mon-Fri for 3 weeks); locomotor activity was monitored
for 60 min following each injection. Nicotine ditartrate (Sigma, St. Louis, MO) was prepared
in saline, to which NaOH was added to obtain a pH of 7.4. Following the sensitization phase,
rats were tested under each of the following 6 different treatment conditions in a random order:
(1) saline + saline; (2) 0.58 μmoles/kg TMPD + saline; (3) 1.94 μmoles/kg TMPD + saline;
(4) saline + nicotine; (5) 0.58 μmoles/kg TMPD + nicotine; and (6) 1.94 μmoles/kg TMPD +
nicotine. On these treatment days, rats were first given an injection of TMPD (0.58 or 1.94
μmoles/kg, s. c.) or saline, followed 15 min later with nicotine (0.4 mg/kg) or saline; locomotor
activity was assessed for 60 min beginning 15 min after the second injection. All injections
were s.c. in the middle region of the back. Intervening between each treatment, rats were given
1 day of maintenance on the initial sensitization regimen, i.e., nicotine (0.4 mg/kg) alone. All
rats in this experiment were food restricted (20 g/day at the end of the locomotor session) for
the duration of the experiment and only the data from the last 30 min of the session were used,
as nicotine-induced hyperactivity is most pronounced during this period [73]. A correlated t-
test was first used to compare the total distance traveled from 30−60 min post-injection period
in the saline + saline and saline + nicotine pretreatment conditions to determine if nicotine-
induced locomotor sensitization was obtained. A one-way ANOVA was then conducted to
determine the effect of TMPD in the presence and absence of nicotine, using TMPD dose as
a within-subject factor.

Nicotine self-administration and sucrose-maintained responding
Experiments were conducted in operant conditioning chambers (ENV-001; Med Associates,
St Albans, VT, USA), housed in sound-attenuated outer chambers using a Med Associates
Interface model SG-503 with MED-IV software. The end walls of the operant conditioning
chamber were aluminum, front and back walls were made of clear Plexiglas, and the floor
consisted of 18 stainless steel rods (4.8 mm in diameter and placed 1.6 cm apart). Located in
the bottom center of one of the end walls was an opening (5 × 4.2 cm) for a recessed food tray,
into which a food hopper could dispense sucrose pellets individually. Located on either side
of the food tray was a response lever. A 28-V white cue light was located 6 cm above each
response lever. An infusion pump (Med-Associates, St. Albans, VT) delivered drug
reinforcement via a silastic tube attached to a swivel mounted on the outside of the back wall.

For nicotine self-administration, rats were initially given brief lever-press training for food
presentations (45 mg Precision Pellets, Bio-Serv, Frenchtown, NJ). Rats were food deprived
to 85% of their ad libitum weights by restricting their intake of rat chow to 8−10 g per day for
5 days. Rats were then briefly trained to press a lever in a two-lever operant chamber using a
fixed ratio 1 (FR 1) schedule, which was incrementally increased to a FR 5 across 7 sessions,
during 15 min sessions. Rats were given 20 g/day of food following each lever-press training
session. After training for food reinforcement, rats were allowed ad libitum access to food in
the home cage for 7 days and were then implanted with an indwelling jugular catheter. Rats
were anesthetized by injections of ketamine (80 mg/kg, i.p.) and diazepam (5 mg/kg, i.p.) and
a silastic catheter was inserted into the jugular vein. The free end of the catheter exited through
the skin and was secured to an acrylic head mount attached to the skull. An infusion pump was
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attached to the head mount via a silastic leash during the self-administration sessions. The
nicotine self-administration procedure was similar to that described previously [74]. Following
recovery from catheter surgery (7 days), rats were reintroduced to operant conditioning
chambers for 60-min daily sessions; food restriction was maintained for the duration of the
experiment (17−20 g/day, given in the home cage after the session). Responses made on one
lever (active) were recorded and were followed by an infusion of nicotine (0.03 mg/kg/infusion,
100 μl delivered over 5.9 sec), whereas responses made on the other lever (inactive) were
recorded, but had no scheduled consequence. The unit dose of nicotine (0.03 mg/kg/infusion)
was chosen based on previously published work [74]. Nicotine was administered i.v. and dose
is expressed as the free base weight. This dose produces optimal responding on a FR schedule
with limited access. Completion of the FR requirement resulted in simultaneous activation of
the infusion pump and cue lights, which signaled a 20-sec time-out period during which
responding on either lever had no consequence. The FR 1 schedule was gradually increased
across sessions to a terminal FR 5 schedule. Rats were trained on the FR 5 schedule until stable
responding was achieved, defined by the following criteria: (1) minimum of 10 infusions per
session; (2) less than 20% variability in responding for 3 consecutive sessions; and (3)
minimum of 2:1 (active:inactive) response ratio. After responding for nicotine stabilized, the
effect of acute pretreatment with TMPD on nicotine self-administration was determined. Each
rat was administered TMPD (1.1 or 1.94 μmoles/kg, s.c.) or saline 15 min prior to the session,
with the order of pretreatments determined randomly.

For food-reinforced operant responding, a separate group of rats was trained to lever press for
food reinforcement using a FR5 schedule of reinforcement during 60-min sessions. In order to
reduce the food reinforcement rate to a level comparable to the rate observed in the nicotine
self-administration experiment, a long signaled time-out (210-sec, cue lights on) was used as
described previously [75]. Criteria for pretreatment were the same as those used in the nicotine
self-administration experiments. Subsequently, each rat was administered TMPD (1.1 or 1.94
μmoles/kg) or saline 15 min prior to the session, with the order of pretreatments determined
randomly. In the nicotine and food operant reinforcement experiments, data were first
expressed as a percent change from the baseline (no pretreatment) control response rate within
each experiment. A two-way ANOVA was then used to assess the effect of TMPD on operant
responding, using reinforcer type (nicotine vs. food) as a between-subject factor and dose (1.1
vs. 1.94 μmoles/kg) as a within-subject factor.. In all cases, statistical significance was declared
at p<0.05.

Results
TMPD was prepared via the initial formation of 1-(3-picolinium)-12-bromododecane bromide
followed by subsequent reaction with triethylamine (Fig. 1). Mecamylamine was evaluated for
its ability to inhibit nicotine-evoked [3H]DA overflow from superfused rat striatal slices (Fig.
2). The time course shows that the mecamylamine-induced inhibition of nicotine-evoked [3H]
DA release was concentration dependent across the concentration range of 10 nM to 10 μM
(Fig. 2, top panel). Fractional release evoked by nicotine (10 μM) peaked 8 min after its addition
to the buffer and subsequently decreased towards basal level despite the presence of nicotine
in the buffer throughout the remainder of the superfusion experiment. Complete inhibition of
the effect of nicotine-evoked fractional release was observed at 10 μM mecamylamine.
Expression of the data as total [3H]DA overflow also shows the concentration dependence of
the mecamylamine-induced inhibition of the effect of nicotine (Fig. 2, bottom panel, F (4,38)
=16.64, p < 0.01). The IC50 for mecamylamine to inhibit the effect of nicotine was about 100
nM. Similar to mecamylamine, TMPD completely inhibited nicotine-evoked fractional release
and nicotine-evoked total [3H]overflow (Fig. 3, top and bottom panels, respectively; F(4,19)
= 10.05, p<0.01). The IC50 for TMPD was 500 nM and complete inhibition of the effect of
nicotine was observed at 10 μM TMPD.
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nAChR subunit combinations α3ß4, α4ß4, α4ß2, α6/3ß2ß3, α7 and α1ß1εδ were expressed in
Xenopus oocytes. Control responses to ACh were obtained and after washout, ACh was co-
applied with TMPD at a concentration of 1 μM. Fig. 4 shows the net charge of the co-application
responses normalized to the responses to ACh alone. Pairwise t-tests between the responses of
single cells to ACh applied alone or co-applied with 1 μM TMPD indicated that there was
significant inhibition of α3ß4 (p < 0.01), α4ß4 (p < 0.01), α4ß2 (p < 0.05, n = 4), and muscle-
type α1ßεδ receptors (p < 0.01). TMPD showed only 18−20% inhibition at α6/3ß2ß3 and α7
receptors. After a washout period, cells were retested with control applications of ACh alone.
Only the responses of α3ß4-expressing oocytes, which were 73 ± 5% of their original
amplitude, remained significantly lower than the original ACh controls (p < 0.05; data not
shown).

The blood-brain barrier permeability surface-area product for [3H]choline in this study was
1.29 ± 0.07 μl/s/g, which approximates previously determined values [71]. Addition of 250
μM of TMPD to the perfusate fluid reduced [3H]choline permeability surface-area product at
the blood-brain barrier to 0.21 ± 0.02 μl/s/g (Fig. 5), affording an apparent Ki of 22.3 ± 2.5
μM. To calculate the Ki of TMPD competitive kinetics were assumed and the following
relationship was used: [(PAo-KD)/(PAi-KD)] = 1+Ci/Ki, where PAo is the [3H]choline PA in
the absence of TMPD, PAi is the [3H]choline PA in the presence of TMPD, and Ci is the
perfusate concentration of TMPD. As such, the apparent Ki was defined as the TMPD
concentration that reduces saturable brain [3H]choline influx by 50% at a tracer choline
concentration (Cpf <<Km) and in the absence of other competing compounds. These data
provide evidence of the degree of blood-brain barrier choline transport interaction. The
decrease in [3H]choline produced by TMPD is similar to that observed upon addition of 250
μM choline (0.29 ± 0.01 μl/s/g; Fig. 5), affording an apparent Km of 44.3 ± 1.5 μM for choline
[76,77]. In the latter studies, the Km for choline was determined using multiple concentrations
(250 nM – 20 mM) of unlabeled choline. Thus, TMPD has 2-fold higher affinity for the blood-
brain barrier choline transporter compared with the endogenous substrate choline.

Fig. 6 illustrates locomotor activity exhibited by rats sensitized initially to nicotine and
subsequently pretreated with saline or TMPD (0.58 or 1.94 μmoles/kg) in the absence or
presence of nicotine. As expected, rats tested under the influence of nicotine alone were
significantly more active than rats tested with saline alone (t=8.43; df=6, p < 0.05). However,
one-way ANOVA revealed no significant effect of TMPD dose, indicating that TMPD did not
alter nicotine-induced activity within the dose range tested. In addition, in the experiment in
which each dose of TMPD was administered alone across 5 repeated daily injections, no
significant change in activity was observed following either acute or repeated treatment (results
not shown).

In the self-administration experiment, under baseline control conditions, rats earned 14.2 ± 0.2
(mean ± SEM) nicotine infusions or 17 ± 0 food reinforcers. Fig. 7 illustrates the number of
nicotine and food reinforcers earned as a function of TMPD dose, expressed as a percent change
relative to the baseline control condition (no pretreatment) within each experiment. A two-way
ANOVA revealed significant main effects of dose (F=5.21; df=1,7; p<0.05) and reinforcer
type (F=5.45; df=1,7; P<0.05); there was no significant interaction between dose and reinforcer
type. Thus, regardless of the dose tested, TMPD produced a greater decrease in the number of
nicotine reinforcers earned compared to the number of food reinforcers earned.

Discussion
The current study introduces for the first time a novel nicotinic receptor antagonist, TMPD,
which is characterized as a bis-quaternary ammonium analog that is a hybrid of the classical
neuromuscular channel blocker, decamethonium dibromide, and the neuronal nicotinic
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receptor antagonist, bPiDDB. In our search for novel nicotinic receptor antagonists, the
nicotine-evoked DA release assay is used as an initial screen to identify lead compounds, since
the ability of nicotine to release DA is believed to be associated with the rewarding properties
of nicotine, and striatum is important for identifying and anticipating rewards and organizing
goal directed behavior [78-81]. TMPD was identified as a hit in this screen because it produced
greater than 40% inhibition of nicotine-evoked DA release at a single probe concentration of
100 nM. In the full concentration-response analysis, TMPD was observed to completely inhibit
nicotine-evoked DA release from superfused rat striatal slices, with an IC50 value of 500 nM.
TMPD was 5-fold less potent than mecamylamine in this regard. As such, TMPD graduated
from a “hit” to a lead compound. Thus, replacing one of the two 3-picolinium head groups of
bPiDDB with a triethylammonium moiety resulted in a compound with a 100-fold lower
potency compared to bPiDDB, and that completely inhibited nicotine-evoked DA release from
striatal slices. These results suggest that TMPD is likely acting as an antagonist at more than
one nAChR subtype, since bPiDDB produces maximal but incomplete inhibition of nicotine-
evoked DA release from rat striatal slices.

As part of our drug discovery process, TMPD was evaluated in oocyte expression experiments
against the indicated panel of receptor subtypes at a probe concentration of 1 μM, along with
many other candidate compounds. Data obtained at a single probe concentration can be quite
informative, such that IC50 values can be estimated to fall within the following ranges; 160
−380 nM, 200−300 nM, 1.3−1.9 μM and 100−160 nM, for α3β4, α4β4, α4β2, and α1β1εδ
receptors, respectively. While higher concentrations of TMPD might have also produced
significant inhibition of α6/3β2β3 and α7 receptors, the current data suggest that IC50 values
for these latter subtypes would be greater than 5 μM and 3 μM, respectively. Note that, in the
oocyte expression experiments, TMPD produced a significant inhibition of muscle-type
receptors, as well as several neuronal subtypes of nAChR, including α3ß4 and α4ß4, but not
at α6/3ß2ß3 or α7 subtypes. α7 nAChRs are not strongly implicated in the addictive processes
[82], and lack of inhibition by TMPD at this subtype suggests that TMPD could have a low
side-effect liability. The effects of TMPD on muscle receptors were readily reversible and
consistent with a use-dependent mechanism. Specifically, inhibition was observed to
accumulate during the course of the response so that while there was at total inhibition of 88
±2% of the net charge, peak currents were inhibited by only 65 ±5%. The time to peak current
was also significantly advanced in the presence of TMPD, so that while in response to ACh
alone, peak responses occurred in 5.6 ± 0.8 seconds (basically the same as the time constant
for solution exchange), in the presence of TMPD peak responses occurred in 1.5 ± 0.3 seconds.
These features are consistent with, and indicative of, use-dependent inhibition [83]. Since the
effects of co-application were fully reversible after only a brief washout, a strict test of use
dependence (i.e. application of the drug in the absence of agonist) would not have been
informative. Therefore, it seems unlikely that effects on muscle receptors would, in fact,
represent a serious side-effect liability due to the enormous receptor reserve at neuromuscular
junctions.

Brain penetration of TMPD was expected to be severely limited given that it is a charged di-
cationic molecule. However, in our recent studies, the blood-brain barrier choline transporter
was shown to bind to a large number of structurally-related quaternary ammonium cations, and
this transporter was shown to facilitate the brain bioavailability of at least two of these charged
molecules, specifically, the monocationic quaternary ammonium compound, N-
octylnicotinium iodide (NONI), and the bis-quaternary ammonium compound, bPiDDB [84].
Thus, while affinity does not equate to transport across the blood-brain barrier choline
transporter, affinity coupled with demonstrated CNS activity (i.e., the current results from
behavioral studies) suggest that TMPD utilizes the blood-brain barrier choline transporter as
a vector to access the brain. Future kinetic analyses will be performed using radiolabelled-
TMPD to directly determine the brain bioavailability of TMPD. In this respect, given that
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TMPD had a 2-fold higher affinity for the blood-brain barrier choline transporter, and that
choline plasma levels are only about 25% of the Km of the blood-brain barrier choline
transporter, the carrier has the capacity to transport TMPD without interrupting the supply of
choline to the brain [84].

Since TMPD decreased nicotine-evoked DA release, we anticipated that if TMPD crosses the
blood brain barrier in sufficient concentrations following systemic administration, TMPD
would inhibit the behavioral effects of nicotine. Surprisingly, TMPD did not inhibit the
hyperactivity in nicotine sensitized rats, but did significantly decrease nicotine self-
administration. The lack of effect on activity by TMPD in the dose range tested is important
because it suggests that the decrease in nicotine self-administration is not due to a general
sedative effect. Furthermore, the TMPD-induced decrease in nicotine self-administration was
relatively specific, since at both doses of TMPD, a greater decrease in nicotine self-
administration was observed compared to the decrease in responding for food reinforcement.
Thus, these results suggest that TMPD may have the ability to reduce the rewarding effect of
nicotine with minimal side effects, a pharmacological profile indicative of potential clinical
utility for the treatment of tobacco dependence.

In summary, when one of the 3-picolinium head groups of bPiDDB is replaced by a
triethylammonium moiety to afford TMPD, the outcome is a loss of potency and selectivity at
native nAChRs mediating nicotine-evoked DA release. Interaction of TMPD with various
nAChRs expressed in Xenopus oocytes was performed to begin to determine the nAChR
subtype with which TMPD interacts. Nevertheless, TMPD is an efficacious inhibitor of
nicotine self-administration in rats similar to mecamylamine.
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Fig. 1.
Preparation of 1-(3-picolinium)-12-triethylammonium-dodecane dibromide (TMPD) and its
structural relationship to bPiDDB and decamethonium dibromide.
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Fig. 2.
Time course of the concentration-dependent mecamylamine inhibition or nicotine-evoked
fractional [3H]DA release (top panel) and total [3H]DA overflow (bottom panel). Slices were
superfused in the absence (control) or presence of mecamylamine for 36 minutes prior to the
addition of nicotine (10 μM) to the buffer (indicated by the arrow). Data are expressed as mean
± SEM (n=7 rats). *p<0.01 for 0.1, 1, and 10 μM versus control).
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Fig. 3.
Time course of the concentration-dependent TMPD inhibition or nicotine-evoked fractional
[3H]DA release (top panel) and total [3H]DA overflow (bottom panel). Slices were superfused
in the absence (control) or presence of mecamylamine for 36 minutes prior to the addition of
nicotine (10 μM) to the buffer (indicated by the arrow). Data are expressed as mean ± SEM
(n=4 rats). *p<0.01 for 10 μM versus control).

Dwoskin et al. Page 18

Biochem Pharmacol. Author manuscript; available in PMC 2008 October 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 4.
Inhibition of nAChR subtypes expressed in Xenopus oocytes. Plotted are the average responses
(± SEM) of four or more oocytes to the co-application of ACh at control concentrations (see
methods) and 1 μM TMPD, normalized to the responses obtained from the same cells to ACh
applied alone. Pairwise t-tests of the responses to ACh alone compared to ACh plus TMPD
indicated that TMPD produced significant inhibition of the ACh-evoked responses of cells
expressing rat α3β4 (p < 0.01), α4β4 (p < 0.01), α4β2 (p < 0.05) or mouse muscle-type
(α1β1εδ) (p < 0.01) subunits. Based on these data, the likely IC50 values for TMPD are
estimated to fall in the following ranges; 160−380 nM, 200−300 nM, 1.3−1.9 μM and 100−160
nM, for α3β4, α4β4, α4β2, and muscle-type, α1β1εδ receptors, respectively.
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Fig. 5.
TMPD has a two-fold higher affinity for the blood-brain barrier choline transporter than
choline. A significant reduction (***; p<0.001) of the cortical blood-brain barrier PS of [3H]
choline was observed by the addition of 250 μM of unlabeled choline or TMPD in the vascular
perfusate. Similar significant reductions were noted in 8 cortical and sub-cortical brain regions
(data not shown). The apparent calculated Ki is defined as the concentration that reduces
saturable brain [3H]-choline (tracer concentration) influx by 50%. Data are mean ± SEM; n =
3−4.
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Fig. 6.
Mean (± SEM) distance traveled during the last 30 min of the 60-min session in rats pretreated
with saline or TMPD (0.58 or 1.94 μmoles/kg), followed by saline (left 3 bars) or nicotine
(right 3 bars). Note that rats were initially sensitized to repeated daily nicotine injections.
Asterisk (*) represents a significant difference compared to saline alone, p<0.05. n=4 per bar.
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Fig. 7.
Mean (± SEM) percent decrease in number of nicotine infusions or food pellets earned
following pretreatment with TMPD (1.1 or 1.94 μmoles/kg). The dashed line represents
baseline number of reinforcers earned without any pretreatment.
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